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Chapter 1

Preview of Dissertation Results

The main aim of this dissertation is to demonstrate that noise injection can improve

the average speed of Expectation-Maximization (EM) algorithms. The EM discussion

in Chapter 2 gives an idea of the power and generality of the EM algorithm schema.

But EM algorithms have a key weakness: they converge slowly especially on high-

dimensional incomplete data. Noise injection can address this problem. The Noisy

Expectation Maximization (NEM) theorem (Theorem 3.1) in Chapter 3 describes

a condition under which injected noise causes faster EM convergence on average.

This general condition reduces to a simpler condition (Corollary 3.2) for Gaussian

mixture models (GMMs). The GMM noise benefit leads to EM speed-ups in clustering

algorithms and in the training of hidden Markov models. The general NEM noise

benefit also applies to the backpropagation algorithm for training feedforward neural

network. This noise benefit relies on the fact that backpropagation is indeed a type of

EM algorithm (Theorem 6.1).

The secondary aim of this dissertation is to show that uniform function approxi-

mators can expand the set of model functions (likelihood functions, prior pdfs, and

hyperprior pdfs) available for Bayesian inference. Bayesian statisticians often limit

themselves to a small set of closed-form model functions either for ease of analysis

or because they have no robust method for approximating arbitrary model functions.

This dissertation shows a simple robust method for uniform model function approxi-

mation in Chapters 8 and 9. Theorem 8.2 and Theorem 9.1 guarantee that uniform

approximators for model functions lead to uniform approximators for posterior pdfs.
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1.1 Noisy Expectation-Maximization

The Noisy Expectation Maximization (NEM) theorem (Theorem 3.1) is the major

result in this dissertation.

Theorem. [Noisy Expectation Maximization (NEM)]:

An EM iteration noise benefit occurs on average if

EY,Z,N |θ∗
[
ln

(
f(Y +N,Z|θk)
f(Y, Z|θk)

)]
≥ 0 . (1.1)

The theorem gives a sufficient condition under which adding noise N to the observed

data Y leads to an increase in the average convergence speed of the EM algorithm.

This is the first description of a noise benefit for EM algorithms. It relies on the

insight that noise can sometimes perturb the likelihood function favorably. Thus

noise injection can lead to better iterative estimates for parameters. This sufficient

condition is general and applies to any EM data model.

The first major corollary (Corollary 3.2) applies this sufficient condition to EM

algorithms on the Gaussian mixture model. This results in a simple quadratic noise

screening condition for the average noise benefit.

Corollary. [NEM Condition for GMMs (in 1-D)]:

The NEM sufficient condition holds for a GMM if the additive noise samples n satisfy

the following algebraic condition

n2 ≤ 2n (µj − y) for all GMM sub-populations j . (1.2)

This quadratic condition defines the geometry (Figure 1.1) of the set of noise

samples that can speed up the EM algorithm.
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Figure 1.1: Geometry of NEM noise for a GMM. Noise samples in the blue overlapping
region satisfy the NEM sufficient condition and lead to faster EM convergence. Noise
samples in the green box satisfy a simpler quadratic NEM sufficient condition and also
lead to faster EM convergence. Sampling from the green box is easier. This geometry
is for a sample y of a 2-D GMM with sub-populations centered at µ1 and µ2. §3.2.3
and §3.2.4 discuss these geometries in more detail.

Noise injection subject to the NEM condition leads to better EM estimates on

average at each iteration and faster EM convergence. Combining NEM noise injection

with a noise decay per iteration leads to much faster overall EM convergence. We

refer to the combination of NEM noise injection and noise cooling as the NEM

algorithm (§3.3). A comparison of the evolution of EM and NEM algorithms on a

sample estimation problem shows that the NEM algorithm reaches the stationary point

of the likelihood function in 30% fewer steps than the EM algorithm (see Figure 1.2).
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Log-likelihood Comparison of EM and Noise-enhanced EM

Figure 1.2: NEM noise injection can speed up the convergence of the EM algorithm.
The plot shows the evolution of an EM algorithm on a log-likelihood surface with
and without noise injection. Both algorithms start at the same initial estimate and
converge to the same point on the log-likelihood surface. The EM algorithm converges
in 10 iterations while the noise-enhanced algorithm converges in 7 iterations—30%
faster than the EM algorithm.

1.2 Applications of Noisy Expectation-Maximization

Finding the NEM noise benefit led to recasting other iterative statistical algorithms as

EM algorithms to allow a noise boost. The NEM theorem is a general prescriptive tool

for extracting noise benefits from arbitrary EM algorithms. So these reinterpretations

serve as a basis for introducing NEM noise benefits into other standard iterative

estimation algorithms. This dissertation shows NEM noise benefits in three such

algorithms: the k-means clustering algorithm (Chapter 4), the Baum-Welch algorithm

(Chapter 5), and the backpropagation algorithm (Chapter 6).

The most important of these algorithms is the backpropagation algorithm for

feedforward neural network training. We show for the first time that the backpropaga-

tion algorithm is in fact a generalized EM (GEM) algorithm (Theorem 6.1) and thus

benefits from proper noise injection:

Theorem. [Backpropagation is a GEM Algorithm]:

The backpropagation update equation for a feedforward neural-network likelihood func-

tion equals the GEM update equation. Thus backpropagation is a GEM algorithm.
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This theorem illustrates a general theme in recasting estimation algorithms as

EM algorithms: iterative estimation algorithms that make use of missing information

and increase a data log-likelihood are usually (G)EM algorithms. Chapter 6 provides

proof details and simulations of NEM noise benefits for backpropagation. The NEM

condition for backpropagation (Theorem 6.3) has interesting geometric properties as

the backpropagation noise ball in Figure 1.3 illustrates.

Geometry of NEM Noise for Backpropagation

Figure 1.3: NEM noise for faster backpropagation using Gaussian output neurons.
The NEM noise must fall inside the backpropagation “training error” sphere. This
is the sphere with center c = t − a (the error between the target output t and the
actual output a) with radius r = ‖c‖. Noise from the noise ball section that intersects
with the error sphere will speed up backpropagation training according to the NEM
theorem. The error ball changes at each training iteration.

Deep neural networks can also benefit from the NEM noise benefit. Deep neural

networks are “deep” stacks of restricted Boltzmann machines (RBMs). The depth

of the network may help the network identify complicated patterns or concepts in

complex data like video or speech. These deep networks are in fact bidirectional
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associative memories (BAMs). The stability and fast training properties of deep

networks are direct consequences of the global stability property of BAMs.

...
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layer

Output
layer

Figure 1.4: A Deep Neural Network consists of a stack of restricted Boltzmann
machines (RBMs) or bidirectional associative memories (BAMs).

The so-called Contrastive Divergence algorithm is the current standard algorithm

for pre-training deep networks. It is an iterative algorithm for approximate maximum

likelihood estimation (§10.2.1). CD is also a GEM algorithm. Theorem 10.1 and

Theorem 10.2 give the NEM noise benefit conditions for training the RBMs in a deep

network. The NEM condition for RBMs shares many geometrical properties with the

NEM condition for backpropagation.

1.3 Results on Bayesian Approximation

The last major results in this dissertation are the Bayesian approximation theorems in

Chapters 8 and 9. They address the effects of using approximate model functions for

Bayesian inference. Approximate model functions are common in Bayesian statistics

because statisticians often have to estimate the true model functions from data or

experts. This dissertation presents the first general proof that these model approxima-

tions do not degrade the quality of the approximate posterior pdf. Below is a combined

statement of the two approximation theorems in this dissertation (Theorem 8.2 and

Theorem 9.1):
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Theorem. [The Unified Bayesian Approximation Theorem]:

Suppose the model functions (likelihoods g, prior h, and hyperpriors π) for a Bayesian

inference problem are bounded and continuous. Suppose also that the joint product of

the model functions’ uniform approximators GHΠ is non-zero almost everywhere on

the domain of interest D.

Then the posterior pdf approximator F = GHΠ∫
D GHΠ

also uniformly approximates the

true posterior pdf f = ghπ∫
D ghπ

This approximation theorem gives statisticians the freedom to use approximators

to approximate arbitrary model functions—even model functions that have no closed

functional form—without worrying about the quality of their posterior pdfs.

Statisticians can choose any uniform approximation method to reap the benefits

of this theorem. Standard additive model (SAM) fuzzy systems are one such tool for

uniform function approximation. Fuzzy systems can use linguistic information to build

model functions. Figure 1.5 below shows an example of a SAM system approximating

a pdf using 5 fuzzy rules. §8.2 discusses Fuzzy function approximation in detail.

Chapter 9 addresses the complexities of approximate Bayesian inference in hierarchical

or iterative inference contexts.

Figure 1.5: A fuzzy function approximation for a β(8, 5) prior pdf. An adaptive SAM
(standard additive model) fuzzy system tuned five fuzzy sets to give a nearly exact
approximation of the beta prior. Each fuzzy rule defines a patch or 3-D surface above
the input-output planar state space. The third rule has the form “If Θ = A3 then B3”
where then-part set B3 is a fuzzy number centered at centroid c3. This rule might
have the linguistic form “If Θ is approximately 1

2
then F (Θ) is large.”
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This dissertation also contains other minor results of note including a convergence

theorem (Theorem 2.3) for a subset of minorization-maximization (MM) algorithms.

MM algorithms generalize EM algorithms. But there are no published proofs of MM

convergence. There is an extension of the GMM-NEM condition to mixtures of jointly

Gaussian sub-populations (Corollary 3.4). There is also an alternate proof showing

that the k-means algorithm is a specialized EM algorithm. Other proofs of this

subsumption already exists in the literature. This dissertation ends with discussions

about ongoing work to establish or demonstrate NEM noise benefits in genomics and

medical imaging applications (§10.2.2, §10.2.3, & §10.2.4).
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